Нанотехнология - относительно молодая область науки. Но она уже успела получить свое распространение во многих областях жизни и даже в медицине. Наш научно-популярный портал посвящен именно этой перспективной области науки и техники, так же нанороботам и всему, что связано с нанотехнологиями.
Масса полезной и интересной информации - от истории до последних достижений. Просто и доступно о сложном. Удачного путешествия по нашему порталу!
 
 
 

Достижения нанотехнологий

Перспективы применения достижений нанотехнологии для решения проблемы продления жизни

В современной геронтологии доминирующей становится точка зрения, что первичные причины старения имеют молекулярную природу. Вместе с тем, технический прогресс привел к тому, что в настоящее время человечество находится на пороге достижения возможности свободного манипулирования с отдельными атомами и молекулами.

Анализ развития этих тенденций, ведущих к "овладению" молекулярным уровнем организации живой материи, позволяет предположить, что через несколько десятилетий подходы к лечению старения претерпят коренные, революционные изменения и, в конечном счете, их развитие приведет к решению проблемы старения.

Нанотехнология определяется как технология, основанная на возможности манипулировать отдельными атомами и молекулами с целью создания достаточно сложных объектов, структура которых может быть описана с точностью до одного атома. Этот термин также используется и для обозначения области науки и техники, связанной с разработкой устройств, позволяющих производить подобные манипуляции. Название нанотехнология происходит от слова нанометр - одна миллиардная доля метра (величина равная нескольким межатомным расстояниям).

Для медицинских применений помимо возможности детекции и манипулирования биомолекулами важной проблемой является энергоснабжение молекулярных роботов и их взаимодействие во время нахождения внутри организма с находящимся вне организма суперкомпьютером, который управляет их работой. Здесь перспективным представляется использование магнитного поля, поскольку биологические ткани прозрачны для него (другим вариантом может быть использование акустических волн).

Магнитное поле может изменять структуру молекулярных роботов, заряжая его энергией и сообщая информацию, а для сообщения информации управляющему компьютеру молекулярный робот может сам изменять свою структуру, что будет зарегистрировано датчиками, расположенными вне тела человека. Аналогом такого подхода является томография на основе ядерного магнитного резонанса - метод, который сейчас широко используется для получения трехмерных изображений внутренних органов в реальном времени.

Главной проблемой, препятствующей разработке и внедрению молекулярных роботов является их проектирование. Основной элемент такого проектирования - моделирование поведения роботов. Эта задача примерно того же порядка сложности, что и моделирование динамики белковых молекул. Хотя его алгоритмы известны, но большой размер молекул не позволяет осуществить их моделирование в приемлимые сроки при помощи современных компьютеров. Оценки тенденций развития вычислительной техники позволяют предположить, что компьютеры смогут достичь мощности, необходимой для такого моделирования лишь в 2010-2015 гг.

Поскольку другие элементы технологии изготовления белковоподобных молекулярных роботов практически уже существуют, можно прогнозировать, что молекулярная нанотехнология может быть реализована вскоре после этого времени. С учетом необходимости разработки конкретных типов молекулярных роботов и проведения дополнительных молекулярно-биологических исследований (направленных как на получение недостающих данных о функционировании биомолекул и клеток, так и на экспериментальное тестирование взаимодействия молекулярных роботов и клеточных структур) можно ожидать, что описанные ниже возможности будут доступны во второй четверти 21 в. Однако, при благоприятном развитии событий отдельные элементы описанной ниже процедуры лечения старения могут начать внедряться в практику уже в конце следующего десятилетия. Например, это может быть противодействие какой-либо одной причине старения посредством простых, автономно функционирующих молекулярных роботов, конструкция которых не сильно отличается от таковой обычных белков. В отличие от более сложных, универсальных роботов их разработка (по крайней мере, в принципе) может быть проведена без больших вычислительных затрат - сочетанием компьютерной "искусственной эволюции" и биохимической "эволюции в пробирке".


 

Ученые-иммунологи из онкологического центра Киммель при Университете имени Томаса Джефферсона, США, создали с помощью нанотехнологий биосенсор, позволяющий решить одну из проблем иммунологии: как Т-клетки иммунной системы находят и и такуют патогенные вирусы.
22.03.2007
Микросенсор, созданный в Университете Альберты, США, поможет следить за состоянием имплантов и протезов бедра. Беспроводный микросенсор, получающий питание от кинетического движения тела пациента, настолько мал, что может уместиться на кончике шариковой ручки.
01.01.07
Одна из проблем, часто встающих перед исследователями, работающими с объектами нанометровых размеров, - это манипулирование ими. Сегодня для этой цели применяют атомно-силовые и сканирующие туннельные микроскопы, которые недостаточно гибки в управлении.
01.01.07
Наноеда (nanofood) – термин новый, малопонятный и неказистый. Еда для нанолюдей? Очень маленькие порции? Еда, сработанная на нанофабриках? Нет, конечно. Но всё же это — любопытное направление в пищевой отрасли
01.01.07